研究兴趣与主要成果 | 热诚欢迎您加入本课题组! 本课题小组主要关注在不同尺度上揭示地表水与地下水交互作用过程,以及这一过程对河湖水体碳-氮循环的潜在影响机制。我们采用的研究手段是数值计算模型和物理观测试验。在试验层面更强调野外原位观测,已在新安江流域(2014-)和雅鲁藏布江流域(2020-)积累了扎实的数据基础,相关成果有望在近几年得以持续发表。此外,本课题小组注重学术交流,在校内、校际和国际都有广泛的合作,先后在美国沙漠研究所、德克萨斯大学奥斯汀分校、宾州州立学习交流,建立了良好的合作基础。以上研究工作的开展离不开国家基金青年及面上课题、重点研发计划子课题、国家重点基金子课题和其他一些生产项目课题的支持。截止目前(2022.5),以负责人身份获得课题10项,参与项目课题8项;发表期刊论文>40篇,发明专利>20项,软件著作权7项,专著1本。 进入到本课题小组之后,您将受到科学且规范的科研训练。以下是选择性列出的一些论文,如有兴趣阅读之后,可与我们组联系。 相关论文 (1) Yuan, Y., Chen, Xiaobing*, Cardenas, M. B., Liu, X., & Chen, L. (2021). Hyporheic exchange driven by submerged rigid vegetation: A modeling study. Water Resources Research, 57, e2019WR026675. https://doi.org/10.1029/2019WR026675 (2)Chen Xiaobing*, Chen Li*, Mark C. Stone, Kumud Acharya. Assessing connectivity between the river channel and floodplains during high flows using hydrodynamic modeling and particle tracking analysis. Journal of Hydrology, 2020, 583, 124609, doi:https://doi.org/10.1016/j.jhydrol.2020.124609. (3)Chen Xiaobing, M. Bayani Cardenas, Chen Li., Hyporheic exchange driven by three-dimensional sandy bed forms: sensitivity to and prediction from bed form geometry. Water Resources Research, 2018,54(6), 4131–4149, https://doi.org/10.1029/2018WR022663 (4)Chen Xiaobing, M. Bayani Cardenas and Chen Li. Three-dimensional versus two-dimensional bed form-induced hyporheic exchange. Water Resources Research, 2015, 51, 2923–2936, doi:10.1002/2014WR016848 (5)Chen Xiaobing, Chen Li*, Zhao Jian, and Yu Zhongbo. Modeling the hydrodynamic interactions between the main channel and the floodplain at McCarran Ranch in the lower Truckee River, Nevada. Natural Hazards and Earth System Sciences, 2015, 15(9), 2161–2172, doi:10.5194/nhess-15-2161-2015 (6)Chen Xiaobing, Zhao Jian, and Chen Li*. Experimental and Numerical Investigation of Preferential Flow in Fractured Network with Clogging Process. Mathematical Problems in Engineering, vol. 2014, Article ID 879189, 13 pages, 2014. doi:10.1155/2014/879189 (7)Liao, F., Cardenas, M. B., Ferencz, S. B., Chen, Xiaobing, & Wang, G. (2021). Tracing bank storage and hyporheic exchange dynamics using 222Rn: Virtual and field tests and comparison with other tracers. Water Resources Research, 57, e2020WR028960. https://doi.org/10.1029/2020WR028960 (8)Chen Li* and Chen Xiaobing. Comments on “An improved Cauchy number approach for predicting the drag and reconfiguration of flexible vegetation” by Peter Whittaker, Catherine A.M.E. Wilson, and Jochen Aberle, Advances in Water Resources (2016), http://dx.doi.org/10.1016/j.advwatres.2016.10.017 (9)Zhang, S, Chen, D*, Chen, L, Chen, Xiaobing*, He, L. Using sediment rating parameters to evaluate the changes in sediment transport regimes in the middle Yellow River basin, China. Hydrological Processes. 2019; 33: 2481-2497. https://doi.org/10.1002/hyp.13488 (10)Ke L, Xu J, Fan C, Liu K, Chen T, Wang S, Chen Xiaobing, Song L, Song C. Remote sensing reconstruction of long-term water level and storage variations of a poorly-gauged river in the Tibetan Plateau. Journal of Hydrology: Regional Studies. 2022 Apr 1;40:101020. (11)Liao F, Wang G, Yang N, Shi Z, Li B, Chen Xiaobing. Groundwater discharge tracing for a large Ice-Covered lake in the Tibetan Plateau: Integrated satellite remote sensing data, chemical components and isotopes (D, 18O, and 222Rn). Journal of Hydrology. 2022 Jun 1;609:127741. (12) Yi, P., Luo, H., Chen, L., Yu, Z., Jin, H., Chen, Xiaobing., Wan, C., Aldahan, A., Zheng, M. and Hu, Q., 2018. Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau. Journal of environmental radioactivity, 192,257-266. |